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INTRODUCTION AND MOTIVATION

Microbial communities facilitate the majority of the
biochemical activity on Earth, playing integral roles in energy
and matter transformations in natural and engineered
ecosystems. Metagenomics is used to analyze the genetic
material of microbial communities directly from an
environmental sample.

To estimate the metabolic potential of a metagenomic
sample we devise a novel approach to reconstructing
biological pathways from enzyme annotations and
environmental parameters. Our approach enjoys a modular,
flexible strategy based on statistical hierarchical Bayesian
deep framework that encodes emergent information
represented in MetaCyc, a highly curated database of
enzyme sequences, reactions, and pathways. The model is
based on graphical modeling techniques to infer latent
pathways represented as mixture components in a sample.
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Figure 1. A modern interpretation
of the perspective of George Box’s
loop to iterative process for solving
metagenomics data analysis
problems. Metagenomic sequence
information is assembled and ORFs
are predicted and annotated (1). Next,
the enzymes and their associated
pathways are curated based on a
multilayer approach where the top
layer dataset is synthesized using one
organism (positive) mixed with
non-overlapping pathways-enzymes
(negative) (2). The next layer
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comprises of two organisms with partially overlapping pathways-enzymes (positive) and non-overlapping pathways-

enzymes (negative). Continuing to add pathway information from more organisms approaches the metabolic potential

of a microbial community. Afterward, Box's loop comes into play in which an iterative cycle of experimental design,

@ Iterative process for solving metagenomics sequences problems

COLLAPSED GIBBS SAMPLING ALGORITHM

The overall generative process is summarized below:

For the training, we adopt a collapsed Gibbs sampling model formulation, model criticism, and application refines the model (3). In the first step of the loop, a probability (1) Sample a distribution 7 ~ Beta(.|y, x)
loop. Here, the computational aspects are applied to infer the pathways using an inference algorithm to compute the a. Sample a distribution over enzymes ©; = (6.......6..p)T ~ Dirichiet(.|ag)

datasets. Further, the model is well defined mathematically
and aligns with the biological interpretations. Based on our

posterior distribution (e.g. collapsed Gibbs sampling) and a know

edge base (e.g. MetaCyc) (4). Finally, the trained

(3) For each pathway: € {1, ..., P}
a. Sample labels from A% € {0, 1}F ~ Bernoulli(.|ng) : Vj(€ i) = 1 where j € {1, ..., R}

model is tested against real data, identifying the important ways that it succeeds and fails in extracting pathways.

b. Sample a distribution over reactions @, = (¢; 1, ..., ¢; z)T ~ Dirichlet(.|ag), A%
(4) For each reaction j € {1, ..., R}

a. Sample labels from A%, € {0,1}F ~ Bernoulli(.|nz) : Ve(€ j) = 1 where e € {1, ..., E}

b. Sample a distribution over enzymes v, = (4,1, ...,4; 1) ~ Dirichlet(.|ayg), A,
(5) For each sample m € {1, ..., M }:

preliminary analysis, we anticipate that our model can
outperform the PatholLogic algorithm on a single organism
task.

HIERARCHICAL BAYESIAN PARAMETRIC MODEL
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Figure 7. Pathways distribution ¢ for
10 pathways in a sample.
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